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Deep phylogeny of cancer drivers and
compensatory mutations
Nash D. Rochman1, Yuri I. Wolf 1 & Eugene V. Koonin 1✉

Driver mutations (DM) are the genetic impetus for most cancers. The DM are assumed to be

deleterious in species evolution, being eliminated by purifying selection unless compensated

by other mutations. We present deep phylogenies for 84 cancer driver genes and investigate

the prevalence of 434 DM across gene-species trees. The DM are rare in species evolution,

and 181 are completely absent, validating their negative fitness effect. The DM are more

common in unicellular than in multicellular eukaryotes, suggesting a link between these

mutations and cell proliferation control. 18 DM appear as the ancestral state in one or

more major clades, including 3 among mammals. We identify within-gene, compensatory

mutations for 98 DM and infer likely interactions between the DM and compensatory sites in

protein structures. These findings elucidate the evolutionary status of DM and are expected

to advance the understanding of the functions and evolution of oncogenes and tumor

suppressors.
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The rapid decrease in DNA sequencing costs1 has enabled
an extensive survey of the pan-cancer mutational land-
scape, with the data made publicly available through the

landmark projects, COSMIC: the Catalog of Somatic Mutations
in Cancer (cancer.sanger.ac.uk/)2 and The Cancer Genome Atlas
(TCGA) Research Network (cancer.gov/tcga)3. Supported by
these advances, a large body of work now exists separating cancer
‘driver’ genes as well as specific ‘driver’ mutations that are
thought to mold the tumor phenotype from the larger list of
‘passenger’ mutations with no known functional impact in iso-
lation4–7. Whereas classical mutational time series have been
proposed to underpin tumorigenesis for more than three dec-
ades8, epistasis among cancer driver genes remains actively
researched9–12. Recent work aims to construct a generalizable
framework for understanding the order in which drivers
appear13,14 as well as the role of passenger accumulation15,16 in
tumor evolution. Compensatory mutations, i.e., strong epistatic
interactions often producing the opposite effect in concert from
that of each constitutive individual mutation, among driver genes
have been shown to confer drug resistance to tumors17–19. Fur-
thermore, multiple modes of somatic mosaicism have been
documented20 where reversion or de novo compensatory muta-
tions mitigate the effects of a deleterious germline variant21,22.
Compensatory mutations for drivers have been engineered
in vitro yielding both a method for validating driver status and
general information about protein structure and function23–27.
However, few studies (for example, the identification of mutually
compensatory mutations in TP53) provide examples of such
compensatory pairs of mutations in orthologs of cancer driver
genes from other species28.

Mapping compensatory mutations onto protein crystal struc-
tures and validating the corresponding interactions between
amino acid residues and their effects experimentally is, arguably,
the optimal approach to elucidate important functional features
of the target protein and can produce unambiguous results.
Crystal structures, however, are often challenging to resolve, and
despite the remarkable progress in the field, it will require a
major, long-term effort to obtain structures of many, particularly
membrane, proteins29–31. Although uncommon, driver mutation
states are present in orthologs of cancer driver genes throughout
the species tree, and exploration of the evolutionary landscape of
co-occurrence between drivers and other mutations in these
orthologs is likely to bring to light candidate driver compensators
which could motivate crystallographic validation and functional
studies. From the standpoint of evolutionary biology, cancer
drivers appear to be of special interest because these mutations
are a direct manifestation of the fundamental evolutionary con-
flict between the ‘interests’ of individual cells in maximizing
proliferation and those of multicellular organisms for which it is
essential to keep cell division in check. The evolutionary status of
driver mutations outside vertebrates has not been studied in
detail, and basic questions stemming from this evolutionary
conundrum remain unanswered. How does the likelihood of
observing a driver state depend on the evolutionary distance from
mammals? Are drivers universally avoided or are they more
commonly observed in unicellular life forms compared to mul-
ticellular organisms as one could suspect given their effect on cell
proliferation? Are drivers generally deleterious, and accordingly,
when drivers are present in other species, is their detrimental
effect compensated by other mutations? Here we examine deep
phylogenies of cancer driver genes for the occurrence of driver
states and potential compensatory mutations to shed light on
these basic questions. We expect that our list of likely compen-
satory mutations provides direction for further experimental
validation.

Results
DM prevalence site depth, not tree distance-dependent. In this
work, we present deep phylogenies for a set of 84 genes (Sup-
plementary Data 1, 15) identified as cancer drivers in multiple
tissues with high confidence4. From this complete set of estab-
lished, non-tissue-specific genes, two genes were excluded:
KMT2C/D due to an impractically large number of paralogs and
HLA-A which resides in the same MSA as HLA-B. We establish
the prevalence of 434 driver mutations across the gene-specific
species trees constructed from protein multiple sequence align-
ments (MSA). Only missense mutations were considered, to allow
for clear identification in the MSA. The MSA were constructed to
be as deep and phylogenetically inclusive as possible (see
“Methods” for details), and long paralogous branches were
manually removed, resulting in alignments that typically con-
tained no more than three sequences per species excluding plants
for which greater numbers of co-orthologs were included (Sup-
plementary Fig. 1). Approximately half of the MSA include
orthologs from fungi, plants, or both, and six include multiple
prokaryotes, whereas the rest are exclusively metazoan (Fig. 1 and
Supplementary Fig. 2). For all MSA, the representation of
eukaryotic species is largely uniform across the major clades,
especially, for plants (Fig. 1). The exception is unicellular
eukaryotes (protists) among which only a minority possesses an
ortholog of any given driver gene. It might be tempting to
rationalize this observation by concluding that driver genes,
mostly, evolved and persist in multicellular eukaryotes, but cau-
tion is due because of the insufficient and uneven sampling of the
numerous protist lineages (Supplementary Fig. 3). For instance,
the uneven representation of cancer drivers in protists could be
due to gene loss in parasites. Additional genome sequencing of a
broad array of protists is needed for a robust assessment of the
association (or lack thereof) of the evolutionary conservation of
cancer driver genes and multicellularity.

Seeking to establish a conservative list of drivers to investigate
for each gene, we calculated a measure of conservation,
homogeneity (see “Methods” for details), among vertebrates in
all sites and for neighborhoods (+/−3 sites) that harbor
mutations from the COSMIC2 database. Each mutation (driver
candidate), excluding common human polymorphisms (labeled
SNP in COSMIC), was assigned a rank (1+ the number of
distinct mutations observed more frequently than the given
mutation). Alternatively, mutations were ranked by their
frequency in tumors (Supplementary Figs. 4 and 5). Top-
ranked driver candidates are predominantly found in highly
conserved regions of the respective proteins, and both site and
neighborhood homogeneity decrease with increasing rank
(Fig. 2a). As could have been expected, top driver candidates
are uncommon in other species, such that the COSMIC frequency
is inversely correlated with the frequency in orthologs across
species: leaf-weighted frequency (see “Methods” for details)
among species increases with the rank across all major clades.
For the lowest-ranked driver candidates (those predominantly
observed in only one tumor and likely to be effectively random),
the frequency of presence among distant eukaryotes (protists,
fungi, and plants) approaches 5%, roughly, the probability of
observing a random residue in an arbitrary site, 1/20 (Fig. 2b).

Given the dramatically different contexts of species and tumor
evolution, one might surmise that there should be no relationship
between the frequency of driver states in tumors and in species,
which is in direct contradiction to our findings. A driver mutation
appearing in the evolutionary record of multicellular species
preceded by a compensatory mutation is a neutral event whereas
that same mutation appearing in a tumor is under positive
selection. However, we provide evidence below that not all drivers
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are deleterious across all multicellular species and thus are not
always compensated. Also, some drivers are likely to be only
weakly deleterious, so that, even if eventually compensated, they
might precede the compensatory mutation in the course of
evolution. Overall, these findings are compatible with our
observation that mutations less commonly observed in tumors
are more likely to be tolerable in multicellular organisms and thus
are more frequently fixed in the course of evolution.

These observations motivated us to define rank thresholds for
each gene and select driver candidates above these thresholds for
further consideration. All but three genes (HLA-A/B, SNP
dominated, and APC, nonsense dominated) contain at least one
missense mutation within rank 20 or lower (Fig. 2c). We selected
up to 9 top driver candidates per gene (Supplementary Fig. 6) that
(1) have rank below 20 and (2) are observed less frequently than at
most 5 distinct missense mutations. Selection under these criteria
yielded a set of 434 driver mutations. Although many more
sophisticated methods for reliable driver identification have been
developed32, we did not restrict our list of drivers in any other way
to guarantee a comprehensive survey of the most common
missense mutations observed in cancer across the species tree.

On the whole, driver states in this ensemble are observed less
frequently among vertebrates than other substitutions relative to
the consensus residue (Fig. 2d) indicating that, even when not
explicitly demonstrated to be deleterious, these mutations are
widely avoided during animal evolution. The driver mutations
mainly reside in highly conserved sites, which is compatible with
the functional importance of the respective residues, such that
mutations exert a deleterious effect. As could be expected, driver
states are most strongly avoided in vertebrates but, perhaps
surprisingly, their frequency differs little between invertebrates,
fungi, and plants. By contrast, drivers are significantly more
prevalent among unicellular eukaryotes (Fig. 2e; see the legend for
p-values). Although too few driver genes have orthologs in
prokaryotes to demonstrate statistical significance, driver states
were found to be rare even in prokaryotes. This partly results
from the fact that prokaryotic orthologs are detectable only for
highly conserved proteins, and in general, deeply conserved sites

(those with confidently detected counterpart sites in the fungal
and/or plant orthologs) show a higher homogeneity in vertebrates
than ‘shallow’ (exclusively metazoan) sites (Fig. 2f, left).
Surprisingly, even when the comparison was limited to highly
homogenous sites, driver states were less frequently identified in
deep than in shallow sites (Fig. 2f, right).

Thus, in some ways, the frequency distribution of driver states
across species matches the expectation. Substitutions resulting in
driver states are uncommon, and the frequency distribution
sharply decays (Fig. 2g), with 181 of the 434 drivers being
universally avoided. However, in those MSA sites that do include
driver states, their frequency is uniform (when averaged across all
sites) among invertebrates, fungi, and plants (Fig. 2e), indicating a
near-constant deleterious effect of the driver substitutions across
the major branches of the species tree including distant ones.
Thus, the probability of observing a cancer driver state in any
species depends more strongly on the phylogenetic depth of the
respective site than on the class or even kingdom where the
species belongs. In other words, the deleterious effect of a driver
state depends primarily on the conservation and hence shared
functional importance of the given site within a gene, which are
conceivably stable through long evolutionary spans, rather than
on the evolutionary distance of a clade from mammals.

Some DM are ancestral states in major clades. Despite the
overall rarity of the driver states across species, 215 of them were
found to be the mode residue in the respective site in at least one
species, and 18 are dominant or predicted ancestral states in
major clades (Fig. 3; Supplementary Fig. 9; Supplementary
Data 2–4)33–37. For each of these 215 drivers, we identified the
“target clade” being either the largest taxonomic group in which
more than half of the species harbor the driver state or the
smallest taxonomic group containing more than 90% of all the
species harboring the driver state, whichever is smaller. In other
words, we found the largest group where the driver is common
unless a subgroup can be identified which covers almost all the
instances of that driver across the tree. (Supplementary Data 2).
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When multiple paralogous sequences are present in an MSA for a
single animal, fungal, or prokaryotic species, driver states are
typically found in all or none of those sequences; by contrast,
among plants, protists, and to a much lesser extent fish, the driver
state is more likely to be a minority residue when present, pos-
sibly, due to the typically larger number of co-orthologs (Fig. 4a).
Although half of these cases are observed within vertebrates, it
has to be emphasized that most of the harboring sites are evo-
lutionarily shallow, i.e., exclusive to metazoa or vertebrates, and
so, as shown above, are expected to demonstrate a high driver
frequency compared to deeper sites including fungi or plants. For

such drivers in shallow sites, frequencies among vertebrates and
invertebrates are poorly correlated, whereas for drivers in deep
sites, frequencies among metazoa and plants/fungi show a
stronger correlation (Fig. 4b, left and right, respectively). This
observation indicates that, in general, drivers permissible in a
given clade are no more likely than average to be permissible in
any other clade. Thus, the results match the expectation that
drivers present in species evolution are compensated by other
mutations and that these compensatory mutations are rare. If a
compensatory mutation appears deep in the tree, the driver it
compensates is likely to be permissible among disparate taxa.
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binned by vertebrate site homogeneity. Each bin contains nearest 20% of sites. For each site, mean frequency of all driver/non-driver substitutions is taken
and each site appears at most once in each bin. e Median, 25th, and 75th percentiles of mean (bootstrap with replacement 1000-fold) driver frequency
across major clades. All distributions are suitably normal (p < 0.01, Anderson Darling) with the following significant (p < 0.05) pairs according to a two-
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Most of the putative ancestral drivers are harbored in sites
within conserved domains or regions of known function such that
substitutions in these sites can be expected to exert deleterious
effects. In particular, PIK3CA H1047L, ATM R2443Q, and ERBB3
V104M are well-documented substitutions that are found in both
cancer and hereditary disease33. However, when observed in
distant orthologs, substitutions relative to the human reference

can not only be benign but essential. For example, RAC1 GTPase
is homologous to plant G proteins in the ROP family, and the
D65N driver substitution, which is ancestral to plants, has been
shown to be important for substrate recognition35, providing an
example of a well-conserved site, in a conserved neighborhood,
with different functions across the tree of life. Perhaps, the most
remarkable distribution of any driver state across the tree is the
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nearly identical presentation of M806V and I776T in the lysine
demethylase KDM6A (Fig. 4c). These drivers are two of the most
frequently observed mutations in the COSMIC database for
KDM6A, with none more frequent than I776T and only three
missense mutations observed more frequently than M806V. The
neighborhood conservation around these sites is strong among
tetrapods, less so among fish, and negligible among invertebrates.
The residue 806V appears to have been fixed shortly before 776T
at the base of tetrapods and amniotes, respectively, and both
disappear at the base of monkeys. To our knowledge, the
structure or function of this neighborhood in KDM6A has not
been studied. Nevertheless, this is a notable case of the unusual
prevalence of two nearby drivers among most vertebrates, with a
concomitant replacement in monkeys suggesting a functionally
important interaction between these sites.

Taken together, these findings indicate that the deleterious
effects of cancer drivers, although common, are far from
insurmountable in the course of evolution, suggesting widespread
compensatory effects of accompanying mutations. Thus, we next
sought to identify such compensatory mutations for as many
drivers as possible.

Phylogenetic, structural evidence of compensatory mutations.
Before focusing on ensembles of explicitly compensatory muta-
tions for drivers, we reviewed pairs of mutations that are strongly

associated (see “Methods” for details) in both the COSMIC
database and the MSA of driver genes (Fig. 5a; Supplementary
Data 5–10)33,34,38,39. Pairs with positive (observed as a pair sig-
nificantly more frequently than expected in both datasets) or
negative (observed significantly less frequently than expected)
associations imply similar functional interaction of the sites in
both the tumor and across the harboring species. The pair M806V
and I776T in KDM6A is a striking example of a positive asso-
ciation. In principle, one could expect opposite associations in
tumors and among species because adaptations beneficial to a
tumor are almost always deleterious for the organism and would
be expected to be deleterious to (at least) all multicellular species.
Conversely, many adaptations beneficial to multicellular species
(e.g., cell-cycle checkpoints) directly stymie tumorigenesis. Con-
trary to this expectation, in our analysis, we observed many pairs
of mutations with either positive or negative associations
(Fig. 5a). It remains to be investigated and understood why, in
many cases, although the driver is deleterious to the multicellular
organism and essential for tumorigenesis, the same compensator
seems to provide a selective advantage at the levels of both
organisms and tumor cells.

We adopted an approach for detecting compensatory muta-
tions that is much more restrictive than pairwise association. For
each driver, we attempted to identify a ‘compensatory ensemble’
composed of one or more compensatory mutations (or simply,
‘compensators’) such that all sequences containing the driver state
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Fig. 5 Structures and associations among of cancer drivers. a Association score, indicating the degree to which the co-occurrence frequency of a
mutation-pair deviates from expectation if independent (+/−, more/less frequent) for select mutation pairs with large association scores in both COSMIC
and the MSA. COSMIC association vs MSA association. Outliers in each quadrant are colored and listed. Bubble size scales with either the expected or
observed number of pairs, whichever is smaller, across quantile normalized ex/obs distributions for both COSMIC and the MSA. See “Methods” for details.
b Pie chart indicating the fraction of drivers with both a “good” structure (whole score >1) and at least one harboring species in the tree (20%), structure
only (21%), tree only (35%), and neither (24%). c Coverage of driver/compensatory ensemble neighborhoods with structures scored (Local Score) 1.9 or
greater. Dashed line, length of protein; gray band, PDB structure; red dots, driver location; green dots, compensator location. ATM is resolved in a single
structure75 and split for display purposes.
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also contain a member of this ensemble. Although this approach
minimizes the chance that a ‘compensatory’ ensemble is
constructed for a driver additionally present in an arbitrary leaf
of the tree due to sequencing error, our analysis suggests this does
not pose a problem for the dataset analyzed here (see “Methods”
for details). To be considered a candidate compensator, a
mutation must be predicted to predate the given driver based
on the ancestral state reconstruction from the phylogenetic tree.
The ensemble must have a low probability of independent co-
occurrence with the driver and members of the ensemble
appearing at least twice independently, at two nodes in the tree.
Each individual mutation may only occur in at most one
ensemble and the ensembles were constructed so as to minimize
the probability of independent co-occurrence (see “Methods” for
details). Few of the mutations represented in these compensatory
ensembles are frequently observed in the COSMIC database
(Supplementary Data 11). This is largely due to the fact that top
COSMIC hits are rarely observed in other species, but even
frequent mutations, such as KDM6A, M806V, and I776T, would
not enter into consideration because at times, 806V appears in the
MSA without 776T despite the presentation of this pair being
suggestive of mutually compensatory function in mammals.

For the top candidate ensembles, we searched for available
structures in the Protein Data Bank (PDB, rcsb.org/)40 which
could support or refute interaction. Although driver neighbor-
hoods are more likely to be structurally resolved than arbitrary
regions of a protein, many driver neighborhoods remain
unresolved (Fig. 5b) and the majority of those resolved are not
entire proteins but rather individual domains (Supplementary
Figs. 7 and 8). Compensators, or other associated sites, may be far
from the driver in the sequence but close in the structure, so that,
when only individual domains of the respective proteins are
structurally resolved, these relationships might remain hidden.
Without a structure covering all associated sites, few paths for
further workup are available. Nevertheless, we identified five
driver-compensatory mutations (compensatory ensemble of size
1) pairs with enough phylogenetic evidence to warrant additional
consideration (Supplementary Data 12 and 13). In particular,
driver E119D, and the proposed compensatory mutation S398N
in RBM10 (RNA-binding Motif 10) is noteworthy as the driver
residue is only present in lower mammals, while the compensator
transitions out at the base of primates. (Supplementary Fig. 9).
Altogether, we identified 32 driver/compensatory ensemble
neighborhoods that were fully covered by resolved protein
structures (Fig. 5c), and below we focus on 9 characteristic
examples of these structures.

Despite the strict criteria imposed, compensatory ensembles for
98 drivers, including the 5 mentioned above, were derived
containing 1 (12%), 2 (25%), 3 (21%), and >3 (42%) mutations
(Supplementary Data 12–14)33,34,41,42. In particular, we highlight
9 notable structures (Fig. 6 and Supplementary Figs. 10–1843; see
Supplementary Data 12 for details). Three cases present the
canonical picture of a compensatory mutation: each compensa-
tory ensemble is of size 1 and a mechanism for the compensator
to directly interact with the driver residue and counteract the
effect of the driver is readily apparent in the structure (Fig. 6a). In
ERBB2 (erb-b2 receptor tyrosine kinase 2; HER2)44,45, the
addition of a methyl group in the driver V842I appears to be
balanced by the loss of a methyl group in the compensator T900S,
conceivably, preventing the residue in site 900 from further
(pathologically) interacting with the next adjacent residue. In
BRAF (B-Raf proto-oncogene, serine/threonine kinase)46, the
change from a positive to a negative charge in the driver K601E is
counterbalanced by the change from a neutral residue to a
positively charged one in the compensator, F635R. In EPHA2
(EPH receptor A2, ephrin receptor)47, the driver R244H is a

substitute from a strong base to a weak base, and the compensator
T225K is a substitute from a neutral side chain to a moderate
base, thus balancing local protonation.

Four cases involve modification of a small molecule binding
pocket or protein–protein interaction interface (Fig. 6b). In NRAS
(NRAS proto-oncogene, GTPase)48, drivers and compensators all
appear to modify the binding pocket. In GNAS (GNAS complex
locus)49,50, driver R844H likely promotes Mg2+ coordination and
prevents dissociation whereas the nearby compensator S848P
could introduce a kink, opening the pocket and promoting
dissociation. In RAC1 (Rac family small GTPase 1)51, the driver
and compensators all appear to be involved in modifying the
binding, cleavage, and release of GDP. In KEAP1 (kelch like ECH
associated protein (1)52,53, driver G333C and compensators
S508P and R554K appear at the binding interface of KEAP1 and
an engineered peptide shown to inhibit the interaction with NRF2
(NFE2L2; nuclear factor, erythroid 2-like (2). It has been shown
that G333C mutants of KEAP1 are unable to repress NRF2
activity40, further demonstrating the functional importance of
these sites. S508P potentially balances the increased size of the
driver substitution by introducing a kink in the structure and
opening up the geometry. R554K could also sterically balance the
driver through a slight decrease in size, in addition to modifying
the protonation of the interface. In CTCF (CCCTC-binding
factor, zinc finger containing; Fig. 6c)54, the compensation
mechanism is likely to involve a stabilizing aromatic interaction
between the driver S354F and compensator K367Y. Finally, in
PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase cataly-
tic subunit alpha; Fig. 6c)55, the multiple drivers and compensa-
tors are located in two exterior neighborhoods of the large
structure potentially important for protein–protein interaction,
suggesting a more complex compensatory mechanism.

Discussion
The definition of driver mutations, that is, mutations that pro-
mote tumorigenesis, implies that these mutations reflect the
trade-off between the selection for maximum cell proliferation
and selection for cell-cycle control that is essential for multi-
cellular life forms. Thus, at least in principle, the study of the
evolution of driver states could shed light on the fundamental
aspects of the evolution of multicellularity. In this work, we
analyze deep multisequence alignments for a representative
ensemble of cancer driver genes and explore the appearance and
distribution of driver mutations throughout species evolution.
This analysis allows us to broadly assess the fitness effects of
driver mutations across varying evolutionary spans. In general,
driver states are strongly avoided such that almost half of the
drivers included in this study are not detected in any of the
available orthologs of the driver genes. Thus, the majority, if not
all, driver mutations have a negative organismal fitness effect,
even in unicellular life forms and those multicellular organisms
that are not subject to cancer, such as plants and fungi. In that
regard, one has to keep in mind that cancer cell proliferation
drastically differs from normal cell division in that tumorigenesis
involves various forms of genome instability including
aneuploidy56,57.

Surprisingly, the distribution of drivers is largely non-specific
with respect to taxa, and driver states appear to be roughly
equally avoided among invertebrates, fungi, and plants. In other
words, the prevalence of driver states does not strongly depend on
the evolutionary distance of a taxon from mammals. This
observation motivates the hypothesis that missense mutations
identified as pathological in mammalian or metazoan species
outside the context of cancer are widely avoided in general. We
identified too few alignable orthologs among prokaryotes for
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robust statistical analysis, but some drivers are completely avoi-
ded even in this group. Notably, however, drivers are more
common among protists, and driver gene distribution appears to
be more heterogenous among the unicellular than among mul-
ticellular eukaryotes. This patchy distribution of driver genes
among unicellular eukaryotes, combined with the more common
occurrence of driver states in those orthologs of driver genes that
have been detected, might reflect the absence, in unicellular
organisms, of some of the mechanisms that control cell division
and cell–cell cooperation in multicellular life forms. These
mechanisms appear to be shared by all multicellular life forms,
even when they lack a multicellular common ancestor, and their
failure results in cancer in metazoans. However, at present, this
interpretation should be taken with caution because the relatively
few protist genome sequences that are currently available poorly
represent the enormous diversity of unicellular eukaryotes. Fur-
ther analysis of the growing collection of protist genomes should
clarify the links between drivers and multicellularity.

Despite the pronounced overall avoidance of the drivers, a
sizable fraction of driver mutations appear as ancestral states
across major clades including non-primate mammals. Although
this might seem to provide evidence for ‘molecular atavism’58, for
many drivers fixed at some point during species evolution, likely
compensatory mutations were identified, and many more, prob-
ably, remain undetected. When available, examination of the
corresponding protein structures often elucidates credible
mechanisms by which the compensatory residue(s) could balance
or counteract the effects of the driver through direct interaction
(e.g., steric effects, pH, etc.) or modification of small molecule
binding pockets or protein–protein interaction interfaces.

Here we employed a phylogenetics first approach to the
identification of compensators which does not rely on structural
information and, conversely, can inform subsequent structural

studies. As the body of available gene and protein expression data
grows, this in silico approach for the identification of compen-
sators can be augmented through validation of the functional
effects of the drivers by utilizing transcriptome and proteome
analyses. Separation of pairwise associations from noise in the
MSA can be challenging59–61, motivating the development of new
methods62. Here we present a coherent approach to quantitatively
assess relevance of such associations (see “Methods” for details).
Achieving statistical significance requires a critical number of
sequences to harbor the driver, which is unrealistic for extremely
deleterious states, as well as a small ensemble of candidate
compensators. For example, reviewing the well-characterized
driver PTPN11: A72T63, we identified a candidate compensator
F285Y, which likely maintains interaction with the driver residue
through hydrogen bonding, further supported by the observation
that F285S is also a driver (Supplementary Fig. 19). However,
notwithstanding this plausible biological argument, the prob-
ability of independent co-occurrence of the pair is high and does
not pass our selection criteria. Thus, the conservative set of
compensators we infer here is only a subset of all mutations
compensating for the deleterious effects of drivers, in agreement
with previous observations indicating that intra-protein epistasis
is pervasive in evolution64.

Previous work not only suggests the presence of many com-
pensated missense mutations (even if the compensator is often
unknown) across the species tree65, with a long list for mice66, but
also that for every deleterious state, there are multiple, typically
more than 10, possible compensatory mutations67. In the case of
drivers, one would expect that the (putative) compensators
detected in other species should be avoided in cancers, given that
they mitigate the effect of drivers. As expected, we detected
multiple compensators for many drivers, but surprisingly, we
additionally found that numerous mutation pairs co-occurred at

Fig. 6 Compensatory mutations for cancer drivers. a Examples of direct, pairwise compensation where there is a single compensatory mutation which
likely balances/counteracts the change induced by the driver. b Examples of compensatory ensembles which are likely to play a role in modifying small
molecule binding pockets or protein interactions to offset the presence of the driver. (In NRAS, compensators not highlighted in structure to avoid clutter.)
c Other examples. In CTCF, an aromatic interaction between the compensator and the driver is predicted to stabilize the protein. In PIK3CA (compensators
not highlighted in structure to avoid clutter), localization of multiple drivers and compensators to two exterior neighborhoods of the large structure
potentially important for protein interaction.
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much higher frequencies than expected by chance in both species
and tumors (Fig. 5a). Such putative compensators were identified
for the most commonly observed drivers (Supplementary Fig. 20).
One could speculate that, in these cases, the compensation of the
impairment of protein function caused by the driver mutation is
only partial and results in a level of activity of the respective
proteins that is optimal for tumor growth (put another way,
certain uncompensated driver mutations could be deleterious
even in tumors). Clearly, however, the causes of the seemingly
paradoxical congruent associations between DM and compensa-
tory mutations in tumors and in species evolution require further
investigation. In particular, analysis of mutant allele frequencies
(MAF) and examination of within-tumor selection signatures
have the potential to demonstrate that driver MAFs are higher
when paired with a compensator or otherwise clarify the under-
lying dynamics. Regardless of the underlying mechanism(s), these
findings imply that many mutations that are considered to be
drivers due to their repeated detection in tumors are actually
compensators68.

Altogether, our findings clearly indicate that most if not all
cancer driver mutations are deleterious for the respective
organisms irrespective of whether or not they are prone to cancer.
For a substantial fraction of drivers, the deleterious effect is
apparently so pronounced that they are universally avoided in
evolution. However, the majority of the drivers appear as
ancestral states in some groups of organisms, and for many of
these, compensators are identifiable. Structural and functional
investigation of the interactions between drivers and compensa-
tors can be expected to shed light on mechanisms of tumor-
igenesis; the roles of oncogenes and tumor suppressors in
different organismal contexts; and protein evolution in general.

Methods
Construction of multiple sequence alignments (MSA). For each of the 84 driver
genes considered, the sequence of the human gene (referred to as target sequence)
was retrieved from the NCBI RefSeq database (see the following section on the
differences between the RefSeq and COSMIC reference sequences). A single
iteration of PSI-BLAST69 was conducted against the Refseq database using default
parameters, with the exception of no compositional adjustment, retrieving up to
10,000 database sequences. When close to 10k sequences were returned by the first
PSI-BLAST iteration, and this list was almost exclusively metazoan, a second round
of PSI-BLAST was conducted with the same parameters, but with Metazoa
excluded from the search. These sequences were clustered and aligned as described
previously70. Briefly, sequences are clustered with a similarity threshold of 0.5 and
each cluster is aligned. Cluster-to-cluster self-score normalized similarity scores are
then produced and clusters with a pairwise score >0.05 are aligned to each other.
This step is performed iteratively.

The resulting clusters were examined for their taxonomic distribution and their
alignments were manually compared in an effort to determine if the cluster
containing the target sequence may be aligned with another cluster composed of
complementary taxa. Upon this review, in all cases, the original target-containing
cluster was retained without adding other sequences. Short sequences fragments
were removed from the alignment. An approximate ML tree was generated from all
alignments using FastTree71, after filtered out sites with the with gap fractions
>50% and homogeneity <0.1. This tree was manually reviewed for paralogs which
were removed along with excess prokaryotic sequences when prokaryotes
outnumbered eukaryotes. A new tree was generated with the remaining sequences
in the same fashion and saved along with the full alignment including all positions
containing at least one non-gap entry. The final tree was rooted on the
taxonomically deepest internal branch.

Differences between COSMIC references and Refseq entries. In most cases, the
reference sequence from the COSMIC “Mutation_AA” data matches a/the Refseq
entry for the gene. For the following eight genes, the COSMICMutation_AA position
data was modified to agree with Refseq by adjusting select COSMIC positions to
account for the differences between the COSMIC reference sequence and the RefSeq
entry. In the case of truncations, where the modified COSMIC Mutation_AA data
still contain entries that do not correspond to the Refseq sequence, none of these
positions harbor drivers, and some are inconsistently referenced within COSMIC
(e.g., Mutation_AA data contains both R123G and G123W).

CASP8: pos 136-181, −32; pos 182-end, −17
GNAS: pos 1-end, +643

KDM6A: pos 445-end, +52
PBRM1: pos 1436-end, +52
SETD2: pos 1-end, +503
SMARCA4: pos 1393-end, +32
STAG2: pos 1157-end, +37
TGFBR2: pos 35-end, +25
The reconstructed COSMIC reference for TCF12 does not agree with the Refseq

sequence for TCF12, NP_003196.1, in the neighborhood around the top driver in
this gene, C419Y, which could not be amended as described above and for this
reason, the COSMIC reference sequence, Ensemble ID: ENST00000438423 was
added to the alignment and used as the reference sequence instead.

Homogeneity calculation. Homogeneity values were calculated for each alignment
column across vertebrate sequences as previously described in Yutin et al.72.
Briefly, for each column two sum-of-pairs scores were calculated: (1) within the
given column and a “homogenous” column with the same residue in all aligned
sequences and (2) a column, composed of random amino acids. A linear scaling of
these scores between 0 and 1 is reported as homogeneity72. “Neighborhood
homogeneity” refers to the mean of the seven homogeneity values for the specified
site and its six nearest neighbors.

Leaf weight calculation. Sequences were leaf-weighted as they appear in the tree
according to the following protocol (Makarova et al.73, Supplementary Fig. 21). First,
the total tree weight is defined as the sum of all branch lengths. Then moving forward
from root to leaves, a weight for each node is defined as the product of A, the sum of
all branch lengths stemming from that node, and B, the weight of the preceding node,
divided by C, the sum all branch lengths stemming from the previous node: A*B/C.
This process is continued until the weights of all leaves are assigned.

Ancestry estimation and compensatory ensemble construction. After obtaining
leaf weights, weighted character sets were constructed for every node following a
modified form of the Fitch traceback algorithm74 for each alignment column
corresponding to a site in the human reference protein. The character weight
vectors were constructed for each tree node with weights equal to the sum of the
leaf weights, descending from this node and containing the given character. Then
the weights in each vector were normalized to sum to 1. Next, pseudo-conditional
probabilities were constructed for all interior nodes taken to be the normalized
product of each vector with the vector assigned to its immediately ancestral node.
Each node was then assigned the “consensus” residue with the highest weight if
that weight was >0.5, or the “undefined” state otherwise. Transitions between
residues were assigned to the midpoint of the branches, connecting nodes with
different consensus residues. Compensatory ensembles were then constructed of
states which transitioned along the same or a prior branch as the emergence of the
driver in the ancestral record.

Compensatory ensembles were held to meet the following criteria.

(1) While there may be more than one unique compensatory mutation
associated with each driver, all sequences containing the driver must also
contain a member from this ensemble. This decreases the probability that a
compensatory ensemble will be constructed for a driver additionally present
in an arbitrary leaf of the tree due to sequencing error; however, drivers
present in at least four leaves (the minimum required for subsequent steps)
for which no compensatory ensemble was constructed tend to be more
frequently observed in the MSA compared to those with a compensatory
ensemble (Supplementary Fig. 22). This suggests that sequencing error is
unlikely to be the cause of our inability to predict compensatory ensembles.

(2) The probability of this co-occurrence, assuming the presence of the putative
compensatory mutation(s) and the driver are independent, is <1%. This
probability was estimated to follow the binomial form:

XNtotal

k¼Npair

Ntotal

k

� �
Fk 1� Fð ÞNtotal�k

where Ntotal is the number of transitions to the driver state across the entire
ancestral record, Npair is the number of transitions to the driver state which
are descendent of a transition to a compensatory state, and F is the fraction
of the tree (fraction of all applicable branch lengths) occupied by a
compensatory state.

(3) Members of the ensemble must appear at least twice independently, at two
nodes in the tree.

(4) At least two sequences containing the driver must descend from each of
these nodes.

(5) Each individual mutation may only occur in at most one ensemble. The
ensembles were constructed in an order to minimize the probability of
independent co-occurrence and ensembles 2 or more larger than the
smallest ensemble for each driver are not discussed. A cartoon of a driver
with a compensatory ensemble satisfying these criteria is shown in
Supplementary Fig. 23.
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PDB structure scoring. For each human reference protein, a single iteration of
protein BLAST against the Protein Data Bank was conducted with default para-
meters, but retrieving up to 10,000 database sequences. For each hit, at every site,
two relative score estimates were constructed, the “Global Score” (the BLAST score
divided by the total protein length) and the “Local Score” (the BLAST score divided
by the length of the footprint of the query sequence on the structure). For each site,
the structure with the largest sum of the Local Score and Global Score squares was
identified (Supplementary Fig. 7). The structure with the highest Local Score
encompassing both sites of every driver/compensator pair was also recorded. The
structures highlighted in Fig. 6 all have Local Scores of 1.9 or greater and coverage
of driver/compensatory ensemble neighborhoods with structures scored 1.9 or
greater is displayed in Fig. 5c.

Calculation of association score for pairs of mutations. For each gene, every
pair of residues, with at least one being a driver state, that appear in at least one row
in the MSA or one tumor the COSMIC database was processed as follows. For the
COSMIC database, the observed number of pairs and expected number of pairs
(the product of the frequency of residue 1, frequency of residue 2, and number of
tumors in the dataset) was recorded. For the MSA, first the leaf weights were
normalized so that the weights of sequences with non-gap residues in both sites of
the pair sum to 1. Observed and expected values were then calculated as follows.
The observed number was assigned the product of the sum of the weights corre-
sponding to sequences harboring the pair and the number of nonzero-weighted
sequences. The expected number was assigned the product of the sums of the
weights corresponding to sequences harboring each state in the pair and the
number of nonzero-weighted sequences. Note that this resulted in non-integer
numbers of both expected and observed pairs in the MSA.

For all pairs of mutations, the association score (analogous to the log-odds
ratio) was calculated as

Score ¼ � ln 1� PCDF exp; obsð Þð Þ; obs> exp

ln PCDF exp; obsð Þð Þ; obs< exp

�

where PCDF(exp, obs) is the cumulative probability of a Poisson distribution with
mean “exp”, the expected value of the data, and evaluated at “obs”, the observed
value of the data. Pairs with the highest scores in both the MSA and COSMIC
databases are available in Tables S3 and S5. Scores with a magnitude of −1 to 1,
indicating the pair that is observed about as frequently as it is expected, were
discarded. Pairs with nonzero association scores in both COSMIC and the MSA are
displayed in Fig. 5a.

Statistics and reproducibility. Regarding Fig. 2e: All distributions are suitably
normal (p < 0.01, Anderson Darling) with significance (p < 0.05) reported accord-
ing to a two-sample t-test.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data utilized in this study is publicly available through the RefSeq, https://www.ncbi.
nlm.nih.gov/refseq/, COSMIC, https://cancer.sanger.ac.uk/cosmic, and PDB, https://
www.rcsb.org/, projects. The alignments generated for this work, from which all figures
can be recreated, are made available at https://www.ftp.ncbi.nih.gov/pub/wolf/_suppl/
drivers/.

Code availability
All custom code designed for this study quantifying multisequence alignment and
phylogenetic tree statistics is described in the supplementary materials in sufficient detail
that implementation in the user’s programming language of choice is possible. All
custom code designed for this study, in addition to the protocol used to construct the
multisequence alignments, is made available at https://www.ftp.ncbi.nih.gov/pub/wolf/
_suppl/drivers/.
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